$4$-Total prime cordial labeling of some cycle related graphs

Authors

  • J Maruthamani Research Scholar, Register number: 18124012091054, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India
  • R Ponraj Department of Mathematics Sri Parakalyani College Alwarkurichi -627 412, India
Abstract:

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordial labeling is called $k$-total prime cordial graph. In this paper we investigate the $4$-total prime cordial labeling of some graphs like Prism, Helm, Dumbbell graph, Sun flower graph.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Prime Cordial Labeling For Some Cycle Related Graphs

We present here prime cordial labeling for the graphs obtained by some graph operations on cycle related graphs.

full text

3-difference cordial labeling of some cycle related graphs

Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...

full text

Prime Cordial Labeling of Some Graphs

In this paper we prove that the split graphs of 1,n K and are prime cordial graphs. We also show that the square graph of is a prime cordial graph while middle graph of is a prime cordial graph for . Further we prove that the wheel graph admits prime cordial labeling for . , n n B n  , n n B n P 8 4 n 

full text

4-prime Cordial Labeling of Some Special Graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣

full text

PD-prime cordial labeling of graphs

vspace{0.2cm} Let $G$ be a graph and $f:V(G)rightarrow {1,2,3,.....left|V(G)right|}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\ $ d_{uv}= begin{cases} left[frac{f(u)}{f(v)}right] ~~if~~ f(u) geq f(v)\ \ left[frac{f(v)}{f(u)}right] ~~if~~ f(v) geq f(u)\ end{cases} $\ for all edge $uv in E(G)$. For each edge $uv$ assign the label $1$ if $gcd (p_{u...

full text

3-difference cordial labeling of some cycle related graphs

let g be a (p, q) graph. let k be an integer with 2 ≤ k ≤ p and f from v (g) to the set {1, 2, . . . , k} be a map. for each edge uv, assign the label |f(u) − f(v)|. the function f is called a k-difference cordial labeling of g if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue issue 2

pages  49- 57

publication date 2018-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023